

Erstprüfung im Rahmen des Eignungsnachweises (EgN) gemäß Ersatzbaustoffverordnung

Hanau, den 27.07.2023

Prutzeugnis Nr.	6009/23 EP
Art der Erstprüfung	□ Ersterbringung
	☐ Aktualisierung von EgN-Nr.:
Betreiber der Aufbereitungsanlage	REMEX GmbH Canthalstraße 6 63450 Hanau
Standort der Aufbereitungsanlage	Betriebsstätte Kelsterbach Airprotring, Alte Heegwaldschneise 65451 Kelsterbach
Art der Aufbereitungsanlage	☑ Stationäre Aufbereitungsanlage☐ Mobile Aufbereitungsanlage
Datum der Probenahme	20.02.2023
Grund des Erstprüfung	□ Erstmalige Inbetriebnahme/Charakterisierung
	Änderung einer genehmigungsbedürftigen Anlage ☐ gemäß §§ 15 und 16 des Bundes-Immissions- schutzgesetzes
	Wechsel der Baumaßnahme einer nicht genehmigungsbedürftigen Anlage
	Herstellung von anderen, nicht im Eignungsnachweis erfassten mineralischen Ersatzbaustoffen
mineralische Ersatzbaustoffe	☑ REMEXIT 0/45 FSS und REMEXIT 0/45 STS
	Charakterisierende Prüfkörnung 0/22, gültig für:
Verteiler	1 x Betreiber der Aufbereitungsanlage
Anlagen	 1 – Probenahmeprotokoll gemäß PN 98 wird nachgereicht 2 – Zusammenfassung der Messwerte 3 – Analytik der Erstprüfung (Bericht Nr. 2261839)
Anzahl der Seiten	4 Seiten Text und 14 Seiten Anlagen

Erstprüfung / Prüfzeugnis Nr. 6009/23 EP Seite 2 von 4

1 Allgemeines

Im Rahmen der Erstprüfung ist von der Überwachungsstelle festzustellen, ob die hergestellten mineralischen Ersatzbaustoffe die geltenden Materialwerte der Anlage 1 (EBV) einhalten und ob sie Schadstoffe nach Anlage 4, Tabelle 2.1 (EBV) enthalten, für welche keine Materialwerte festgelegt sind.

Die Erstprüfung einer Aufbereitungsanlage zur Herstellung von Recycling-Baustoffen umfasst zusätzlich die Feststellung, ob die Überwachungswerte nach Anlage 4, Tabelle 2.2 eingehalten werden. Die Analytik der Proben hat eine Untersuchungsstelle durchzuführen.

2 Zuständige Stellen

Überwachungsstelle Laboratorium für Baustoffprüfung AG

(Anerkannt gemäß RAP Stra, Fachgebiete D, I) Güterbahnhofstraße 1

D-63450 Hanau

Untersuchungsstelle AGROLAB Agrar und Umwelt GmbH

(Akkreditierung gemäß DIN EN ISO/IEC 17025) Dr.-Hell-Straße 6

D-24107 Kiel

Zuständige Behörde Dem Verfasser des Prüfzeugnisses

derzeit nicht bekannt

3 Analytik der Probe

Die Analytik der Probe wurde gemäß § 9 der "Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung – ErsatzbaustoffV)" durchgeführt. Die Wahl des analytischen Verfahrens zur Bestimmung der Feststoffgehalte und der Eluatkonzentrationen richtet sich nach Anlage 5 der Ersatzbaustoffverordnung. Abweichend von Absatz 1 Satz 2 (Ersatzbaustoffverordnung) werden beim Eignungsnachweis die zur Überwachung der Materialwerte erforderlichen Eluatkonzentrationen bei einem Wasser-zu-Feststoffverhältnis von zwei zu eins nach der DIN 19528, Ausgabe Januar 2009, aus dem Ergebnis des ausführlichen Säulenversuchs berechnet.

Die Untersuchungsergebnisse der

- Materialwerte für geregelte Ersatzbaustoffe (ohne Gleisschotter, Bodenmaterial und Baggergut) und
- Überwachungswerte (Feststoffwerte) bei Recycling-Baustoffen,

können der beigefügten Zusammenfassung der Messwerte bzw. dem Prüfbericht der v. g. Untersuchungsstelle entnommen werden.

Erstprüfung / Prüfzeugnis Nr. 6009/23 EP Seite 3 von 4

4 Bewertung der Untersuchungsergebnisse

- 1 Die Materialwerte nach Anlage 1 mit Ausnahme der Materialwerte "pH-Wert" und "elektrische Leitfähigkeit" gelten im Rahmen des Eignungsnachweises als eingehalten, wenn die gemessene Konzentration oder der gemessene Stoffgehalt eines Parameters gleich oder geringer ist als der entsprechende Materialwert.
- 2 Die Materialwerte nach Anlage 1 mit Ausnahme der Materialwerte "pH-Wert" und "elektrische Leitfähigkeit" gelten im Rahmen der werkseigenen Produktionskontrolle und der Fremdüberwachung als eingehalten, wenn es bei einem gemessenen Wert innerhalb einer Zeitreihe von fünf aufeinander folgenden Überprüfungen nur einmalig zu einer Überschreitung desselben Materialwertes gekommen ist. Der Messwert, der den Materialwert überschreitet, muss kleiner als der Bezugswert sein. Der Bezugswert ist die Summe aus dem jeweiligen Materialwert nach Anlage 1 und der für diesen Materialwert zulässigen Überschreitung nach Anlage 6. Soweit erst eine Fremdüberwachung durchgeführt wurde, dürfen die festgestellten Materialwerte nach Anlage 1 bei dieser nicht überschritten werden.
- Zur Überprüfung der Einhaltung der Materialwerte von Summenparametern werden die Konzentrationen der bezeichneten Einzelsubstanzen addiert, wobei Einzelstoffkonzentrationen unterhalb der analytischen Nachweisgrenze unberücksichtigt bleiben und Konzentrationen oberhalb der Nachweisgrenze, aber unterhalb der Bestimmungsgrenze, mit der Hälfte des Wertes der Bestimmungsgrenze in die Summenbildung gehen.
- 4 Die Materialwerte "pH-Wert" und "elektrische Leitfähigkeit" sind Orientierungswerte. Bei Abweichungen von mehr als 0,5 Einheiten beim pH-Wert oder mehr als 10 Prozent bei der elektrischen Leitfähigkeit hat der Betreiber der Aufbereitungsanlage die Ursachen zu ermitteln. Abweichend von Sätzen 1 und 2 ist der Parameter "pH-Wert" bei Gießereirestsanden ein Grenzwert. Bei frisch gebrochenem, reinem Betonmaterial können die Materialwerte "pH-Wert" und "elektrische Leitfähigkeit" unberücksichtigt bleiben, wenn die Materialwerte für Sulfat und die übrigen Materialwerte für Recycling-Baustoffe der jeweiligen Materialklasse nach Anlage 1, Tabelle 1 eingehalten werden.

Die Bewertung der Probe erfolgt gemäß Abschnitt 3, § 10 der Ersatzbaustoffverordnung. Sofern erforderlich wurde die Rundungsregel 4.5.1 der DIN 1333 bei der Bewertung angewandt.

Erstprüfung / Prüfzeugnis Nr. 6009/23 EP Seite 4 von 4

5 Klassifizierung der Probe

Der hier untersuchte mineralische Ersatzbaustoff wird anhand der ermittelten Materialwerte in die Materialklasse "RC-1" eingestuft. Die Überwachungswerte (Feststoffwerte) werden eingehalten.

Des Weiteren werden die maximal zulässigen Materialwerte der Fußnoten 1, 3 und 4 gemäß Anlage 2, Tabelle 1 (RC-1) eingehalten.

Bemerkung:

Die erhöhte elektrischen Leitfähigkeit ist auf den vergleichsweise hohen Betonanteil zurückzuführen und kann - ohne dass gleichzeitig erhöhte Werte für Chlorid und Sulfat vorliegen - als unbeachtet bleiben.

Laboratorium für Baustoffprüfung AG

Leiter der Prüfstelle

Erstprüfung im Rahmen des Eingungsnachweises gemäß ErsatzbaustoffV - Zusammenfassung der Messwerte -

Betreiber der Anlage: REMEX GmbH, Canthalstraße 6, 63450 Hanau

Standort der Anlage: Betriebsstätte Kelsterbach, Airprotring, Alte Heegwaldschneise, 65451 Kelsterbach

Prüfbericht Nr.: 6009/23 EP

Mineralischer Ersatzbaustoff: REMEXIT 0/45 FSS REMEXIT 0/45 STS

Bezug zu Prüfbericht Nr. 2261839-686265 der AGROLAB Agrar und Umwelt GmbH, Kiel

			•	rutbericht Nr. 2261839-68	56265 der AGROLAB Agrai		
		Materialwerte ge	emäß EBV, Anlage 1, T	abelle 1		Zu untersuchende	
Parameter	Dim.	Messwert		Recycling-Baustoff (MEB)			
	Dilli.	Messwert	RC-1	RC-2	RC-3	Anlage 4, Tab. 2.1	
pH-Wert ¹⁾	μS/cm	12	6-13	6-13	6-13	х	
Elektr. Leitfähigkeit 2)	mg/l	4.100	2.500	3.200	10.000	х	
Chlorid	mg/l	10				Х	
Sulfat	mg/l	3,0	600	1.000	3.500	х	
DOC	mg/l	14				х	
PAK ₁₅ 3)	μg/l	0,82	4,0	8,0	25	х	
PAK ₁₆ 4)	mg/kg	3,3	10	15	20		
MKW	μg/l	100				Х	
Phenole	μg/l	5,1				х	
Antimon	μg/l	1,2				Х	
Arsen	μg/l	1,1				Х	
Blei	μg/l	1 ,6				Х	
Cadmium	μg/l	0,30				Х	
Chrom, ges.	μg/l	4,1	150	440	900	Х	
Kupfer	μg/l	33	110	250	500	Х	
Molybdän	μg/l	10				Х	
Nickel	μg/l	11				х	
Vanadium	μg/l	2,0	120	700	1.350	х	
Zink	μg/l	30				х	

1) Nur bei GRS Grenzwert, ansonsten stoffspezifischer Orientierungswert; bei Abweichungen ist die Ursache zu prüfen. 2) Stoffspezifischer Orientierungswert; bei Abweichungen ist die Ursache zu prüfen. 3) PAK15: PAK16 ohne Naphthalin und Methylnaphthaline 4) PAK16: stellvertretend für die Gruppe der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) werden nach der Liste der Environmental Protection Agency (EPA) 16 ausge-wählte PAK untersucht: Acenaphthen, Acenaphthylen, Anthracen, Benzo[a]anthracen, Benzo[a]pyren, Benzo[b]fluoranthen, Benzo[g,h,i]perylen, Benzo [k]fluoranthen, Chrysen, Dibenzo[a,h]anthracen, Fluoranthen, Fluoren, Indeno[1,2,3- cd]pyren, Naphthalin, Phenanthren und Pyren.

Überwachungswerte	(Feststoffwerte)) gemäß EBV,	, Anlage 4, Tabelle 2.2	
-------------------	------------------	--------------	-------------------------	--

Parameter	Dim.	Messwert	nur bei Recycling-Baustoffen (MEB)
Arsen	mg/kg	0,09	40
Blei	mg/kg	12,8	140
Chrom	mg/kg	27,2	120
Cadmium	mg/kg	0,09	2
Kupfer	mg/kg	18,4	80
Quecksilber	mg/kg	< 0,066	0,6
Nickel	mg/kg	31,6	100
Thalium	mg/kg	< 0,1	2
Zink	mg/kg	71,3	300
Kohlenwasserstoff 1)	mg/kg	< 50 (470)	300 (600)
PCB6 und PCB 118	mg/kg	< 0,010	0,15

1) Der angegebene Wert gilt für Kohlenwasserstoffverbindung mit einer Kettenlänge von C10 bis C22. Der Gesamtgehalt (C10 – C40) bestimmt nach der DIN EN 14039, Ausgabe Januar 2005 darf insgesamt den in Klammern genannten Wert nicht überschreiten. Überschreitungen die auf Asphaltanteile zurückzuführen sind, stellen kein Ausschlusskriterium dar.

insgesamt den in Klamm	ern genannten Wert i	nicht überschreiten. Überschre	itungen die auf Asphaltanteile	zurückzuführen sind, stellen kei	n Ausschlusskriterium dar.	
	Zuordnı	ıng Fußnoten gemäß	EBV, Anlage 2, Tabell	e 1: Recycling-Baustof	f der Klasse 1 (RC-1)	
Parameter	Dim.	Messwert	Fußnote 1	Fußnote 2	Fußnote 3	Fußnote 4
Chrom	μg/l	4	≤ 110	≤ 15	-	-
PAK ₁₅	μg/l	0,82	≤ 2,3	≤ 0,3	≤ 2,7	-
Kupfer	μg/l	33	-	≤ 30	-	-
Vanadium	μg/l	2,0	-	≤ 30	≤ 55	≤ 90
	Aı	nforderung der Fußnote	erfüllt	nicht erfüllt	erfüllt	erfüllt
	Zuordnı	ıng Fußnoten gemäß	EBV, Anlage 2, Tabell	e 2: Recycling-Baustof	f der Klasse 2 (RC-2)	
Parameter	Dim.	Messwert	Fußnote 2	Fußnote 3	Fußnote 4	=
Chrom	μg/l					-
PAK ₁₅	μg/l					=
Kupfer	μg/l					=
Vanadium	μg/l		_			-

Anforderung der Fußnote

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Agrar&Umwelt Dr.-Hell-Str. 6, 24107 Kiel

Laboratorium für Baustoffprüfung AG Herr Harald Hippich Güterbahnhofstr. 1 63450 Hanau

> Datum 16.03.2023 Kundennr. 20122193

> > Methode

Best.-Gr.

PRÜFBERICHT

Auftrag **2261839** 6009/23 REMEX GmbH Kelsterbach Analysennr. **686265** Mineralisch/Anorganisches Material

Probeneingang 28.02.2023

Probenahme **20.02.2023 10:00**

Probenehmer Auftraggeber (H. Hippich)

Einheit

Kunden-Probenbezeichnung EBV SP EgN

RückstellprobeJaAuffälligkt. ProbenanlieferungKeineProbenahmeprotokollNeinSäulentestnr.686265Ersterfassungsnummer874016

	Limen	Ligebilis	DestGr.	Methode
Feststoff				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Masse Laborprobe	Kg	13,4	0,02	DIN 19747 : 2009-07
Trockensubstanz	%	92,5	0,1	DIN EN 14346 : 2007-03, Verfahren A
Königswasseraufschluß		6		DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	0,09	1	DIN EN 16171 : 2017-01
Blei (Pb)	mg/kg	12,8	5	DIN EN 16171 : 2017-01
Cadmium (Cd)	mg/kg	0,09	0,06	DIN EN 16171 : 2017-01
Chrom (Cr)	mg/kg	27,2	1	DIN EN 16171 : 2017-01
Kupfer (Cu)	mg/kg	18,4	2	DIN EN 16171 : 2017-01
Nickel (Ni)	mg/kg	31,6	2	DIN EN 16171 : 2017-01
Quecksilber (Hg)	mg/kg	<0,066	0,066	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	<0,1	0,1	DIN EN 16171 : 2017-01
Zink (Zn)	mg/kg	71,3	6	DIN EN 16171 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09 (Schüttelextr.)
Kohlenwasserstoffe C10-C40 (GC)	mg/kg	470	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09 (Schüttelextr.)
Naphthalin	mg/kg	0,022	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Acenaphthylen	mg/kg	0,021	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Acenaphthen	mg/kg	0,033	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Fluoren	mg/kg	0,038	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Phenanthren	mg/kg	0,44	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Anthracen	mg/kg	0,12	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Fluoranthen	mg/kg	0,66	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)
Pyren	mg/kg	0,49	0,05	DIN ISO 18287 : 2006-05 (Verfahren A)

Fraebnis

Seite 1 von 4

DAKKS

Deutsche
Akkreditierungsstelle
D-Pl-14047-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

> **Datum** 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

gekennzeichnet

Symbol

mit dem

akkreditierte

nicht

Ausschließlich

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach Analysennr. 686265 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung **EBV SP EgN**

Einheit Ergebnis Best.-Gr. Methode Benzo(a)anthracen DIN ISO 18287: 2006-05 mg/kg 0,26 0.05 (Verfahren A) Chrysen mg/kg 0,23 0,05 DIN ISO 18287: 2006-05 (Verfahren A) DIN ISO 18287 : 2006-05 Benzo(b)fluoranthen 0,25 0.05 mg/kg (Verfahren A) DIN ISO 18287: 2006-05 Benzo(k)fluoranthen mg/kg 0,11 0,05 (Verfahren A) DIN ISO 18287: 2006-05 Benzo(a)pyren 0,23 0.05 mg/kg (Verfahren A) DIN ISO 18287: 2006-05 Dibenzo(ah)anthracen mg/kg 0,027 0.05 (Verfahren A) Benzo(ghi)perylen mg/kg 0.18 0.05 DIN ISO 18287: 2006-05 (Verfahren A) DIN ISO 18287 : 2006-05 Indeno(1,2,3-cd)pyren mg/kg 0,16 0,05 (Verfahren A) 3,3 #5) Berechnung aus Messwerten der Einzelparameter PAK EPA Summe gem. mg/kg **ErsatzbaustoffV** PAK EPA Summe gem. BBodSchV Berechnung aus Messwerten der 3,3 1 mg/kg Einzelparameter 2021 <0,0010 (NWG) 0.005 DIN EN 17322 : 2021-03 PCB (28) *) mg/kg (Extraktionsverfahren 1) PCB (52) mg/kg <0,0010 (NWG) 0.005 DIN EN 17322: 2021-03 (Extraktionsverfahren 1) DIN EN 17322 : 2021-03 PCB (101) 0,0028 0,005 mg/kg (Extraktionsverfahren 1) PCB (138) <0,0010 (NWG) DIN EN 17322 : 2021-03 0.005 mg/kg (Extraktionsverfahren 1) PCB (118) <0,0010 (NWG) 0.005 DIN EN 17322 : 2021-03 mg/kg (Extraktionsverfahren 1) PCB (153) 0.0051 0,005 DIN EN 17322 : 2021-03 mg/kg (Extraktionsverfahren 1) <0,0010 (NWG) PCB (180) mg/kg 0,005 DIN EN 17322: 2021-03 (Extraktionsverfahren 1) PCB 7 Summe gem. BBodSchV 2021*) mg/kg <0.010 x) Berechnung aus Messwerten 0.01 der Einzelparameter Berechnung aus Messwerten der Einzelparameter PCB 7 Summe gem. ErsatzbaustoffV*) mg/kg <0,010 #5) 0,01

E	uat
Au	sführli

::	Liuai				
702	Ausführlicher Säulenversuch DIN 19528		۰		DIN 19528 : 2009-01
5	Fraktion < 32 mm	%	° 90,7	0,1	DIN 19529 : 2015-12
5	Fraktion > 32 mm	%	° 9,3	0,1	Berechnung
EN IS	pH-Wert berechnet		12		Berechnung aus den Einzelmesswerten
SOIN	elektrische Leitfähigkeit berechnet	μS/cm	4100		Berechnung aus den Einzelmesswerten
gema	Chlorid berechnet	mg/l	10		Berechnung aus den Einzelmesswerten
n sınd	Sulfat berechnet	mg/l	3,0		Berechnung aus den Einzelmesswerten
rtahre	Antimon berechnet	μg/l	1,2		Berechnung aus den Einzelmesswerten
ten Ve	Arsen berechnet	µg/l	0,29 - 1,1		Berechnung aus den Einzelmesswerten
richte	Blei berechnet	μg/l	1,3 - 1,6		Berechnung aus den Einzelmesswerten
ent be	Cadmium berechnet	µg/l	0,0 - 0,30		Berechnung aus den Einzelmesswerten
Jokum	Chrom berechnet	µg/l	4,1		Berechnung aus den Einzelmesswerten
sem L	Kupfer berechnet	µg/l	33		Berechnung aus den Einzelmesswerten

AG Hildesheim HRB 200557 Ust./VAT-ID-Nr: DE 198 696 523 Geschäftsführer Dr. Paul Wimmer Dr. Jens Radicke

Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Die in diesem

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach
Analysennr. 686265 Mineralisch/Anorganisches Material
Kunden-Probenbezeichnung EBV SP EgN

	Einheit	Ergebnis	BestGr.	Methode
Molybdän berechnet	μg/l	0,0 - 10		Berechnung aus den Einzelmesswerten
Nickel berechnet	µg/l	4,7 - 11		Berechnung aus den Einzelmesswerten
Vanadium berechnet	μg/l	0,33 - 2,0		Berechnung aus den Einzelmesswerten
Zink berechnet	μg/l	0,0 - 30		Berechnung aus den Einzelmesswerten
DOC berechnet	mg/l	5,2 - 14		Berechnung aus den Einzelmesswerten
Phenol berechnet	μg/l	1,7		Berechnung aus den Einzelmesswerten
2-Methylphenol berechnet	μg/l	0,11		Berechnung aus den Einzelmesswerten
3-Methylphenol berechnet	μg/l	0,45		Berechnung aus den Einzelmesswerten
4-Methylphenol berechnet	μg/l	0,36		Berechnung aus den Einzelmesswerten
2,3-Dimethylphenol berechnet	μg/l	0,010 - 0,019		Berechnung aus den Einzelmesswerten
2,4-Dimethylphenol berechnet	μg/l	0,048		Berechnung aus den Einzelmesswerten
2,5-Dimethylphenol berechnet	μg/l	0,0056 - 0,014		Berechnung aus den Einzelmesswerten
2,6-Dimethylphenol berechnet	μg/l	0,0027 - 0,011		Berechnung aus den Einzelmesswerten
3,4-Dimethylphenol berechnet	μg/l	0,047		Berechnung aus den Einzelmesswerten
3,5-Dimethylphenol/ 4-Ethylphenol berechnet	μg/l	0,11		Berechnung aus den Einzelmesswerten
3-Ethylphenol berechnet	μg/l	0,054		Berechnung aus den Einzelmesswerten
2-Ethylphenol berechnet	μg/l	0,016 - 0,021		Berechnung aus den Einzelmesswerten
2,3,5-/2,4,5-Trimethylphenol berechnet	μg/l	0,0 - 0,020		Berechnung aus den Einzelmesswerten
2,4,6-Trimethylphenol berechnet	μg/l	0,0036 - 0,012		Berechnung aus den Einzelmesswerten
3,4,5-Trimethylphenol berechnet	μg/l	0,0069 - 0,015		Berechnung aus den Einzelmesswerten
Phenole Summe berechnet	µg/l	1,7 - 5,1		Berechnung
Kohlenwasserstoffe C10-C22 berechnet	µg/l	0,0 - 100		Berechnung aus den Einzelmesswerten
Kohlenwasserstoffe C10-C40 berechnet	µg/l	0,0 - 50		Berechnung aus den Einzelmesswerten
Acenaphthylen berechnet	µg/l	0,013		Berechnung aus den Einzelmesswerten
Acenaphthen berechnet	μg/l	0,11		Berechnung aus den Einzelmesswerten
Fluoren berechnet	μg/l	0,096		Berechnung aus den Einzelmesswerten
Phenanthren berechnet	μg/l	0,37		Berechnung aus den Einzelmesswerten
Anthracen berechnet	μg/l	0,060		Berechnung aus den Einzelmesswerten
Fluoranthen berechnet	μg/l	0,11		Berechnung aus den Einzelmesswerten
Pyren berechnet	μg/l	0,052		Berechnung aus den Einzelmesswerten
Benzo(a)anthracen berechnet	μg/l	0,0054		Berechnung aus den Einzelmesswerten
Chrysen berechnet	μg/l	0,0090		Berechnung aus den Einzelmesswerten
Benzo(b)fluoranthen berechnet	μg/l	0,0021 - 0,0036		Berechnung aus den Einzelmesswerten

Seite 3 von 4

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol "*) "gekennzeichnet.

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

> **Datum** 16.03.2023 20122193

Kundennr.

PRÜFBERICHT

2261839 6009/23 REMEX GmbH Kelsterbach Auftrag Analysennr. 686265 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung **EBV SP EgN**

	Einheit	Ergebnis	BestGr.	Methode
Benzo(k)fluoranthen berechnet	μg/l	0,0 - 0,0030		Berechnung aus den Einzelmesswerten
Benzo(a)pyren berechnet	μg/l	0,0 - 0,0010		Berechnung aus den Einzelmesswerten
Dibenzo(a,h)anthracen berechnet	μg/l	0,0 - 0,0010		Berechnung aus den Einzelmesswerten
Benzo(ghi)perylen berechnet	μg/l	0,0 - 0,0010		Berechnung aus den Einzelmesswerten
Indeno(123-cd)pyren berechnet	μg/l	0,0 - 0,0010		Berechnung aus den Einzelmesswerten
PAK 15 Summe berechnet	μg/l	0,82		Berechnung

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die

Hinweis zum Probenahmedatum: Das Probenahmedatum ist eine Kundeninformation.

Beginn der Prüfungen: 15.03.2023 Ende der Prüfungen: 16.03.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISÖ/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Ausschließlich

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Agrar&Umwelt Dr.-Hell-Str. 6, 24107 Kiel

Laboratorium für Baustoffprüfung AG Herr Harald Hippich Güterbahnhofstr. 1 63450 Hanau

> Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Auftrag **2261839** 6009/23 REMEX GmbH Kelsterbach Analysennr. **686266** Mineralisch/Anorganisches Material

Probeneingang 28.02.2023

Probenahme 20.02.2023 10:00

Probenehmer Auftraggeber (H. Hippich)
Kunden-Probenbezeichnung L/S=0.3 EBV SP EgN

RückstellprobeJaAuffälligkt. ProbenanlieferungKeineProbenahmeprotokollNeinSäulentestnr.686265

		Einheit	Ergebnis	BestC	∋r.	Methode
Eluat						
L/S-Verhältnis		ml/g	0,30	0,0	1	DIN 19528 : 2009-01
Phenol	*)	μg/l	6,7	0,0	5	DIN 38407-27 : 2012-10
2-Methylphenol	*)	μg/l	0,43	0,0	5	DIN 38407-27 : 2012-10
3-Methylphenol	*)	μg/l	1,7	0,05	5	DIN 38407-27 : 2012-10
4-Methylphenol	*)	μg/l	1,4	0,05	5	DIN 38407-27 : 2012-10
Kohlenwasserstofffraktion C10-C22		μg/l	<100	50		DIN EN ISO 9377-2 : 2001-07
Phenole Summe gem. ErsatzbaustoffV	*)	μg/l	11 ^{#5)}	4		Berechnung aus Messwerten der Einzelparameter
2-Ethylphenol		μg/l	0,069	0,0	5	DIN 38407-27 : 2012-10
2,3-Dimethylphenol	*)	μg/l	0,069	0,0	5	DIN 38407-27 : 2012-10
2,3,5-/2,4,5-Trimethylphenol	*)	μg/l	<0,020 (NWG)	0,1		DIN 38407-27 : 2012-10
2,3,6-Trimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	5	DIN 38407-27 : 2012-10
2,4-Dimethylphenol		μg/l	0,20	0,0	5	DIN 38407-27 : 2012-10
2,4,6-Trimethylphenol	*)	μg/l	0,024	0,0		DIN 38407-27 : 2012-10
2,5-Dimethylphenol	*)	μg/l	0,037	0,0	5	DIN 38407-27 : 2012-10
2,6-Dimethylphenol	*)	μg/l	0,018	0,0		DIN 38407-27 : 2012-10
3-Ethylphenol	*)	μg/l	0,19	0,0	5	DIN 38407-27 : 2012-10
3,4-Dimethylphenol	*)	μg/l	0,19	0,0	5	DIN 38407-27 : 2012-10
3,4,5-Trimethylphenol	*)	μg/l	0,046	0,0	5	DIN 38407-27 : 2012-10
3,5-Dimethylphenol/ 4-Ethylphenol	*)	μg/l	0,41	0,1		DIN 38407-27 : 2012-10
DOC		mg/l	34,5	10		DIN EN 1484 : 2019-04
pH-Wert			12,6	2		DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit		μS/cm	5940	10		DIN EN 27888 : 1993-11
Chlorid (CI)		mg/l	22	1		DIN EN ISO 10304-1 : 2009-07
Sulfat (SO4)		mg/l	3,5	1		DIN EN ISO 10304-1 : 2009-07
Antimon (Sb)		μg/l	1	1		DIN EN ISO 17294-2 : 2017-01
Arsen (As)		μg/l	2	1		DIN EN ISO 17294-2 : 2017-01
Blei (Pb)		μg/l	2	1		DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)		μg/l	<0,3	0,3		DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)		μg/l	6	3		DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)		μg/l	109	5		DIN EN ISO 17294-2 : 2017-01

Seite 1 von 2

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14047-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren

AG Hildesheim HRB 200557 Ust./VAT-ID-Nr: DE 198 696 523 Geschäftsführer Dr. Paul Wimmer Dr. Jens Radicke Dr. Stephanie Nagorny

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

nicht akkreditierte Verfahren sind mit dem Symbol " *) " gekennzeichnet

DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich

Die in diesem Dokument berichteten Verfahren sind gemäß

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach Analysennr. 686266 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung L/S=0.3 EBV SP EgN

	Einheit	Ergebnis	BestGr.	Methode
Molybdän (Mo)	μg/l	<10	10	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	μg/l	31	7	DIN EN ISO 17294-2 : 2017-01
Vanadium (V)	μg/l	2	2	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstofffraktion C10-C40	μg/l	<50,0	50	DIN EN ISO 9377-2 : 2001-07
Acenaphthylen	μg/l	0,013	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,091	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,34	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	0,062	0,01	DIN 38407-39 : 2011-09
Fluoranthen	μg/l	0,10	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,049	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	0,0048	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	0,0048	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Indeno(1,2,3-cd)pyren	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
PAK 15 Summe gem. ErsatzbaustoffV	µg/l	0,77 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Hinweis zum Probenahmedatum: Das Probenahmedatum ist eine Kundeninformation.

Beginn der Prüfungen: 16.03.2023 Ende der Prüfungen: 16.03.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

2. Gorshi

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de

Seite 2 von 2

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14047-01-00

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Agrar&Umwelt Dr.-Hell-Str. 6, 24107 Kiel

Laboratorium für Baustoffprüfung AG Herr Harald Hippich Güterbahnhofstr. 1 63450 Hanau

> Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Auftrag **2261839** 6009/23 REMEX GmbH Kelsterbach Analysennr. **686268** Mineralisch/Anorganisches Material

Probeneingang 28.02.2023

Probenahme 20.02.2023 10:00

Probenehmer Auftraggeber (H. Hippich)

Kunden-Probenbezeichnung L/S=1 EBV SP EgN

Rückstellprobe

Auffälligkt. Probenanlieferung

Probenahmeprotokoll

Säulentestnr.

Saulentestnr.

Ja

Keine

Nein

686265

	Einheit	Ergebnis	BestGr.	Methode
Eluat				
L/S-Verhältnis	ml/g	1,0	0,01	DIN 19528 : 2009-01
Phenol	*) µg/l	1,2	0,05	DIN 38407-27 : 2012-10
2-Methylphenol	*) µg/l	0,081	0,05	DIN 38407-27 : 2012-10
3-Methylphenol	*) µg/l	0,33	0,05	DIN 38407-27 : 2012-10
4-Methylphenol	*) µg/l	0,25	0,05	DIN 38407-27 : 2012-10
Kohlenwasserstofffraktion C10-C22	μg/l	<100	50	DIN EN ISO 9377-2 : 2001-07
Phenole Summe gem. ErsatzbaustoffV	*) µg/l	<4,0 ^{#5)}	4	Berechnung aus Messwerten der Einzelparameter
2-Ethylphenol	*) µg/l	0,017	0,05	DIN 38407-27 : 2012-10
2,3-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
2,3,5-/2,4,5-Trimethylphenol	*) µg/l	<0,020 (NWG)	0,1	DIN 38407-27 : 2012-10
2,3,6-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
2,4-Dimethylphenol	*) µg/l	0,031	0,05	DIN 38407-27 : 2012-10
2,4,6-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
2,5-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
2,6-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
3-Ethylphenol	*) µg/l	0,037	0,05	DIN 38407-27 : 2012-10
3,4-Dimethylphenol	*) µg/l	0,033	0,05	DIN 38407-27 : 2012-10
3,4,5-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10
3,5-Dimethylphenol/ 4-Ethylphenol	*) µg/l	0,070	0,1	DIN 38407-27 : 2012-10
DOC	mg/l	<10,0	10	DIN EN 1484 : 2019-04
pH-Wert		12,4	2	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm	3880	10	DIN EN 27888 : 1993-11
Chlorid (CI)	mg/l	8,8	1	DIN EN ISO 10304-1 : 2009-07
Sulfat (SO4)	mg/l	2,9	1	DIN EN ISO 10304-1 : 2009-07
Antimon (Sb)	μg/l	1	1	DIN EN ISO 17294-2 : 2017-01
Arsen (As)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	μg/l	<0,3	0,3	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	μg/l	4	3	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	μg/l	24	5	DIN EN ISO 17294-2 : 2017-01

Seite 1 von 2

Compared to the service of the servi

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach Analysennr. 686268 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung L/S=1 EBV SP EgN

	Einheit	Ergebnis	BestGr.	Methode
Molybdän (Mo)	µg/l	<10	10	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	µg/l	<7	7	DIN EN ISO 17294-2 : 2017-01
Vanadium (V)	µg/l	<2	2	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	µg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstofffraktion C10-C40	µg/l	<50,0	50	DIN EN ISO 9377-2 : 2001-07
Konlenwasserstomraktion C10-C40 Acenaphthylen Acenaphthen Fluoren	μg/l	0,013	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	0,12	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,10	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,39	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	0,059	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
ନ୍ତି Pyren	μg/l	0,053	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	0,0048	0,01	DIN 38407-39 : 2011-09
Chrysen Benzo(b)fluoranthen	μg/l	0,0051	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
E Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(k)fluoranthen Benzo(a)pyren Dibanza(ah)anthraaan	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Indeno(1,2,3-cd)pyren	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Benzo(ghi)perylen Indeno(1,2,3-cd)pyren PAK 15 Summe gem. Ersatzbaustoff	/ μg/l	0,85 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

#5) Einzelwerte, die die Nachweisrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Hinweis zum Probenahmedatum: Das Probenahmedatum ist eine Kundeninformation.

Beginn der Prüfungen: 16.03.2023 Ende der Prüfungen: 16.03.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

2. 901311

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de

ISO/IEC 17025:2018 akkreditiert.

DIN EN

Die in diesem Dokument berichteten Verfahren sind

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Agrar&Umwelt Dr.-Hell-Str. 6, 24107 Kiel

Laboratorium für Baustoffprüfung AG Herr Harald Hippich Güterbahnhofstr. 1 63450 Hanau

> Datum 16.03.2023 Kundennr. 20122193

> > Methode

PRÜFBERICHT

Auftrag **2261839** 6009/23 REMEX GmbH Kelsterbach Analysennr. **686269** Mineralisch/Anorganisches Material

Probeneingang 28.02.2023

Probenahme 20.02.2023 10:00

Probenehmer Auftraggeber (H. Hippich)

Finhait

Kunden-Probenbezeichnung L/S=2 EBV SP EgN

Rückstellprobe

Auffälligkt. Probenanlieferung

Probenahmeprotokoll

Säulentestnr.

Ja

Keine

Nein

686265

	Einheit Ergebnis BestC		BestGr.	r. Methode	
Eluat					
L/S-Verhältnis	ml/g	2,0	0,01	DIN 19528 : 2009-01	
Phenol	*) µg/l	0,64	0,05	DIN 38407-27 : 2012-10	
2-Methylphenol	*) µg/l	0,043	0,05	DIN 38407-27 : 2012-10	
3-Methylphenol	*) µg/l	0,16	0,05	DIN 38407-27 : 2012-10	
4-Methylphenol	*) µg/l	0,13	0,05	DIN 38407-27 : 2012-10	
Kohlenwasserstofffraktion C10-C22	µg/l	<100	50	DIN EN ISO 9377-2 : 2001-07	
Phenole Summe gem. ErsatzbaustoffV	*) µg/l	<4,0 ^{#5)}	4	Berechnung aus Messwerten der Einzelparameter	
2-Ethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,3-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,3,5-/2,4,5-Trimethylphenol	*) µg/l	<0,020 (NWG)	0,1	DIN 38407-27 : 2012-10	
2,3,6-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,4-Dimethylphenol	*) µg/l	0,015	0,05	DIN 38407-27 : 2012-10	
2,4,6-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,5-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,6-Dimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3-Ethylphenol	*) µg/l	0,025	0,05	DIN 38407-27 : 2012-10	
3,4-Dimethylphenol	*) µg/l	0,014	0,05	DIN 38407-27 : 2012-10	
3,4,5-Trimethylphenol	*) µg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3,5-Dimethylphenol/ 4-Ethylphenol	*) µg/l	0,038	0,1	DIN 38407-27 : 2012-10	
DOC	mg/l	<10,0	10	DIN EN 1484 : 2019-04	
pH-Wert		12,4	2	DIN EN ISO 10523 : 2012-04	
elektrische Leitfähigkeit	μS/cm	3620	10	DIN EN 27888 : 1993-11	
Chlorid (CI)	mg/l	7,6	1	DIN EN ISO 10304-1 : 2009-07	
Sulfat (SO4)	mg/l	2,9	1	DIN EN ISO 10304-1 : 2009-07	
Antimon (Sb)	μg/l	1	1	DIN EN ISO 17294-2 : 2017-01	
Arsen (As)	µg/l	<1	1	DIN EN ISO 17294-2 : 2017-01	
Blei (Pb)	µg/l	2	1	DIN EN ISO 17294-2 : 2017-01	
Cadmium (Cd)	µg/l	<0,3	0,3	DIN EN ISO 17294-2 : 2017-01	
Chrom (Cr)	µg/l	4	3	DIN EN ISO 17294-2 : 2017-01	
Kupfer (Cu)	μg/l	17	5	DIN EN ISO 17294-2 : 2017-01	

Fraehnis

Rest -Gr

Seite 1 von 2

DAKKS

Deutsche
Akkreditierungsstelle
D-Pl-14047-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach Analysennr. 686269 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung L/S=2 EBV SP EgN

	Einheit	Ergebnis	BestGr.	Methode
Molybdän (Mo)	μg/l	<10	10	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	µg/l	<7	7	DIN EN ISO 17294-2 : 2017-01
Vanadium (V)	μg/l	<2	2	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstofffraktion C10-C40	μg/l	<50,0	50	DIN EN ISO 9377-2 : 2001-07
Acenaphthylen	μg/l	0,012	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,094	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,36	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	0,060	0,01	DIN 38407-39 : 2011-09
Fluoranthen	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,052	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	0,0059	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	0,013	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	0,0042	0,01	DIN 38407-39 : 2011-09
Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
Indeno(1,2,3-cd)pyren	μg/l	<0,0010 (NWG)	0,005	DIN 38407-39 : 2011-09
PAK 15 Summe gem. ErsatzbaustoffV	μg/l	0,82 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Hinweis zum Probenahmedatum: Das Probenahmedatum ist eine Kundeninformation.

Beginn der Prüfungen: 16.03.2023 Ende der Prüfungen: 16.03.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

2. 901311

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de

ISO/IEC 17025:2018 akkreditiert.

DIN EN

Die in diesem Dokument berichteten Verfahren sind

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Agrar&Umwelt Dr.-Hell-Str. 6, 24107 Kiel

Laboratorium für Baustoffprüfung AG Herr Harald Hippich Güterbahnhofstr. 1 63450 Hanau

> Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

mit dem

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025;2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach Analysennr. 686270 Mineralisch/Anorganisches Material

Probeneingang 28.02.2023

Probenahme 20.02.2023 10:00

Probenehmer Auftraggeber (H. Hippich)

Kunden-Probenbezeichnung L/S=4 EBV SP EgN

Rückstellprobe Ja Auffälligkt. Probenanlieferung Keine Probenahmeprotokoll Nein

i iobchanneprotokon		Helli				
		Einheit	Ergebnis	BestGr.	Methode	
Eluat						
L/S-Verhältnis		ml/g	4,0	0,01	DIN 19528 : 2009-01	
Phenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2-Methylphenol	*)	µg/l	0,013	0,05	DIN 38407-27 : 2012-10	
3-Methylphenol	*)	μg/l	0,036	0,05	DIN 38407-27 : 2012-10	
4-Methylphenol	*)	μg/l	0,034	0,05	DIN 38407-27 : 2012-10	
Kohlenwasserstofffraktion C10-C22		μg/l	<100	50	DIN EN ISO 9377-2 : 2001-07	
Phenole Summe gem. ErsatzbaustoffV	*)	μg/l	<4,0 ^{#5)}	4	Berechnung aus Messwerten der Einzelparameter	
2-Ethylphenol	_	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,3-Dimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,3,5-/2,4,5-Trimethylphenol		μg/l	<0,020 (NWG)	0,1	DIN 38407-27 : 2012-10	
2,3,6-Trimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,4-Dimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,4,6-Trimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,5-Dimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
2,6-Dimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3-Ethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3,4-Dimethylphenol	*)	μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3,4,5-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	DIN 38407-27 : 2012-10	
3,5-Dimethylphenol/ 4-Ethylphenol	*)	μg/l	<0,020 (NWG)	0,1	DIN 38407-27 : 2012-10	
DOC		mg/l	<10,0	10	DIN EN 1484 : 2019-04	
pH-Wert			12,3	2	DIN EN ISO 10523 : 2012-04	
elektrische Leitfähigkeit		μS/cm	2850	10	DIN EN 27888 : 1993-11	
Chlorid (CI)		mg/l	4,3	1	DIN EN ISO 10304-1 : 2009-07	
Sulfat (SO4)		mg/l	3,9	1	DIN EN ISO 10304-1 : 2009-07	
Antimon (Sb)		μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01	
Arsen (As)		μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01	
Blei (Pb)		μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01	
Cadmium (Cd)		μg/l	<0,3	0,3	DIN EN ISO 17294-2 : 2017-01	
Chrom (Cr)		μg/l	4	3	DIN EN ISO 17294-2 : 2017-01	
Kupfer (Cu)		μg/l	11	5	DIN EN ISO 17294-2 : 2017-01	
Molybdän (Mo)		μg/l	<10	10	DIN EN ISO 17294-2 : 2017-01	

Seite 1 von 2 Deutsche Akkreditierungsstelle D-PL-14047-01-00

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum 16.03.2023 Kundennr. 20122193

PRÜFBERICHT

Symbol

mit dem

icht

17025:2018 akkreditiert.

ISO/IEC

Ш

gemäß

Die in diesem Dokument berichteten Verfahren sind

Auftrag 2261839 6009/23 REMEX GmbH Kelsterbach
Analysennr. 686270 Mineralisch/Anorganisches Material
L/S=4 EBV SP EgN

Einheit Ergebnis Best.-Gr. Methode DIN EN ISO 17294-2: 2017-01 Nickel (Ni) μg/l <7 DIN EN ISO 17294-2 : 2017-01 Vanadium (V) μg/l <2 2 DIN EN ISO 17294-2 : 2017-01 Zink (Zn) <30 30 μg/l DIN EN ISO 9377-2: 2001-07 Kohlenwasserstofffraktion C10-C40 <50,0 µg/l 50 DIN 38407-39 : 2011-09 Acenaphthylen 0,013 0,01 μg/l Acenaphthen DIN 38407-39: 2011-09 μg/l 0,13 0,01 Fluoren DIN 38407-39 : 2011-09 0,11 0,01 μg/l Phenanthren 0,36 DIN 38407-39 : 2011-09 0,01 μg/l Anthracen μg/l 0.056 0.01 DIN 38407-39 : 2011-09 Fluoranthen μg/l 0,11 0,01 DIN 38407-39: 2011-09 Pyren µg/l 0,055 0.01 DIN 38407-39: 2011-09 DIN 38407-39: 2011-09 Benzo(a)anthracen μg/l 0,0053 0,01 DIN 38407-39: 2011-09 0,0058 0,01 Chrysen µg/l DIN 38407-39 : 2011-09 <0,0030 (NWG) Benzo(b)fluoranthen 0,01 μg/l Benzo(k)fluoranthen <0,0030 (NWG) 0,01 DIN 38407-39: 2011-09 μg/l DIN 38407-39: 2011-09 Benzo(a)pyren μg/l 0.0012 0.005 <0.0010 (NWG) DIN 38407-39: 2011-09 Dibenzo(ah)anthracen μg/l 0,005 Benzo(ghi)perylen <0,0010 (NWG) 0,005 DIN 38407-39: 2011-09 µg/l Indeno(1,2,3-cd)pyren <0,0010 (NWG) 0,005 DIN 38407-39: 2011-09 μg/l PAK 15 Summe gem. ErsatzbaustoffV Berechnung aus Messwerten der 0.85 #5) µg/l 0,05 Einzelparameter

#5) Einzelwerte, die die Nachweisrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Erläuterung: Das Zeichen "-" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Hinweis zum Probenahmedatum: Das Probenahmedatum ist eine Kundeninformation.

Beginn der Prüfungen: 16.03.2023 Ende der Prüfungen: 16.03.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de

Seite 2 von 2

Control of the contro

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Erstellt: D. Krüger, 22.09.2021

MF-04269-DE

Geprüft: J. Radicke, 23.09.2021

Freigegeben: R. Rieger, 24.09.2021; Ver.1, gültig ab 24.09.2021

Seite 1 von 1

Protokoll analog DIN 19747 (Juli 2009) und Deponieverordnung (April 2009 mit Stand vom 30.06.2020)

•				16.03.2023			
Erhebungsdaten Probenahme (vor	n der Feldprobe zu	r Laborprob	e)				
Probenahme durch	Auftraggeber (H.	Hippich)					
Maximale Korngröße/Stückigkeit		<10m	m				
Masse Laborprobe in kg		13,40)				
Probenvorbereitung (von der Labo	orprobe zur Prüfpro	be)					
Auftragsnummer	2261839						
Analysennummer	686265						
Probenbezeichung Kunde	EBV SP EgN						
Laborfreigabe Datum, Uhrzeit	15.03.2023 17:03	3:36					
Probenahmeprotokoll liegt dem Labo		nein X	ja	siehe Anlage			
Auffälligkeiten bei der Probenanliefer		nein X	ja				
inerte Fremdanteile	9	nein X	ja	Anteil Gew-%			
(nicht untersuchte Fraktion: z.B. Metall, Glas,	etc.)		,				
Analyse Gesamtfraktion		nein	ja X				
Zerkleinerung durch Backenbrecher		nein X	ja				
Siebung:			,				
-							
Analyse Siebdurchgang < 2 mm		nein X	ja	Anteil < 2 mm Gew-%			
Analyse Siebrückstand > 2 mm		nein X	ja	siehe gesonderte Analysennummer			
Lufttrocknung		nein X	ja	,			
Probenteilung / Homogenisierung		110111 71	J.				
Fraktionierendes Teilen		nein	jaX				
Kegeln und Vierteln		nein X	ja				
Rotationsteiler		nein X	ja				
Riffelteiler		nein X	ja				
Cross-riffling		nein X	ja				
Rückstellprobe		nein	ja X	Rückstellung mindestens 6 Wochen nach			
Anzahl Prüfproben			1	Laboreingang			
Anzani Fruiproben			1				
Probenaufarbeitung (von der Prüf	probe zur Messpro	be)					
untersuchungsspez. Trocknung Prü		,					
chem. Trocknung		nein X	ja				
Trocknung 105°C		nein X	ja	(Ausnahme: GV aus 105°C Teilprobe)			
Lufttrocknung		nein X	ja				
Gefriertrocknung		nein X	ja				
untersuchungsspez. Feinzerkleinerung Prüfprobe							
mahlen		nein X	ja	(<250 μm, <5 mm, <10 mm, <20 mm)			
schneiden		nein X	ja				

AGROLAB Agrar&Umwelt Frau Larissa Gorski, Tel. 0431/22138-581 Service Team Umwelt 1, Email: umwelt1.kiel@agrolab.de